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ABSTRACT 
As automated vehicles become more widespread but lack a driver to 
communicate in uncertain situations, external communication, for 
example, via LEDs or displays, is evaluated. However, the concepts 
are mostly evaluated in simple scenarios, such as one person trying 
to cross in front of one automated vehicle. The traditional empirical 
approach fails to study the large-scale efects of these in this not-
yet-real scenario. Therefore, we built PedSUMO, an enhancement 
to SUMO for the simulacra of automated vehicles’ efects on public 
trafc, specifcally how pedestrian attributes afect their respect for 
automated vehicle priority at unprioritized crossings. We explain 
the algorithms used and the derived parameters relevant to the 
crossing. We open-source our code under https://github.com/M-
Colley/pedsumo and demonstrate an initial data collection and 
analysis of Ingolstadt, Germany. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); • Applied computing → Transportation; • Comput-
ing methodologies → Modeling and simulation. 
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1 BACKGROUND AND SUMMARY 
Automated driving is a growing feld of research [25], with fully 
Automated Vehicles (AVs) being part of current discussions and 
research [44]. AVs could provide numerous advantages, such as 
improving trafc fow [34]. However, these advantages are currently 
only theoretical. The consequences of introducing AVs in greater 
numbers into public trafc can only be estimated as conducting 
large-scale studies in public is impossible when the safety of AVs 
is not clear yet [59, 61]. Also, fear of AVs is still signifcant in the 
population [27, 48]. Additionally, measuring the impact of many 
AVs on public trafc in many diferent locations might be unrealistic 
or expensive. Thus, creating virtual scenarios to simulate how AVs 
impact public trafc is more feasible. 

This project examines the macroscopic efects of AVs in traf-
fc and how the respect of pedestrians towards AVs’ priority at 
crossings leads to diferent or fuctuating trafc fows. Currently, 
numerous research studies are concerned about whether AVs will 
have to be able to communicate with vulnerable road users such as 
pedestrians or cyclists [31]. When AVs are regularly stopped due to 
pedestrian behavior, this can ripple through trafc, slowing down 
the overall fow. The efect is stronger with an increasing number of 
AVs with an external Human-Machine Interface (eHMI) as an eHMI 
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serves as a communication between the human and the vehicles, 
contributing to a higher feeling of safety around AVs [4, 54]. The 
following provides background information about human behavior 
modeling, factors on crossing decisions, and eHMIs. 

(a) Ulm, Germany. (b) Ingolstadt, Germany. 

Figure 2: Overview of (parts of) diferent cities. Partially 
taken from previous work. 

Attributes Infuencing Street Crossing 
Several attributes contribute to pedestrian street-crossing decisions, 
including other pedestrians’ behavior, group size, social status, and 
experience with AVs [15, 54]. Yagil [67] found that pedestrians are 
more likely to follow trafc laws when observing similar behavior 
from others. However, Lefkowitz et al. [43] demonstrated that this 
imitation is infuenced by the appearance of the other pedestrian. 
Contrarily, Dolphin et al. [24] argued that social status and gender 
do not signifcantly impact imitation, emphasizing the role of group 
size instead. In line with the importance of group size, Heimstra 
et al. [30] showed that children often cross streets in groups, which 
infuences their risk-taking behavior [29, 58, 60, 65]. Studying all 
these factors in an empirical study is nearly impossible, therefore, 
simulations are necessary. 

External Communication of Automated Vehicles 
Current human-driven vehicles often rely on gestures and eye con-
tact for communication [53]. Although such explicit communica-
tion is infrequent [42], eHMIs have been proposed as a solution for 
AVs [31]. These eHMIs can be classifed based on modality, message 
type, and communication location [11, 12]. 

Several studies have explored the efectiveness of eHMIs across 
diferent populations, including children [19], visually [13, 14] or 
cognitively [28] impaired individuals, general pedestrians [1, 5, 8– 
10, 17, 21, 45], manual drivers [7], and bicyclists [33]. Various 
modalities, such as displays [26], LED strips [26, 46], and audi-
tory cues [47], have been tested. Overall, eHMIs have positively 
afected pedestrian behavior and comprehension [13, 20]. However, 
current research suggests the need to address unresolved questions 
such as overtrust [32], scalability [16], and the social aspects of 
eHMIs [5, 39, 55, 56]. A major limitation of these studies is the 
focus on simple scenarios, often resembling 1:1 (AV:pedestrian) 
communication. While Colley et al. [6] approached this with an on-
line simulation studying the efect of multiple lanes and additional 
simulated pedestrians, large-scale analyses are missing. 

Pedestrian Behavior Modeling 
There exist several pedestrian simulation approaches. These can be 
distinguished into macroscopic or microscopic [52]. Microscopic 
refers to simulations where each actor is simulated instead of, for 
example, fows. SUMO [22] represents a possibility to simulate 
mobility on the microscopic level. While “there are good models 
for optimal walking behavior, high-level psychological and social 
modeling of pedestrian behavior still remains an open research 
question that requires many conceptual issues to be clarifed” [3, 
p. 1]. Camara et al. [3] showed that algorithms used age, gender, 
distraction, social group membership, cultural membership, and 
road safety adaptation to model pedestrian behavior. While most 
works use a deterministic approach, Völz et al. [64] showed a model 
that predicts the crossing decision at a crosswalk using support 
vector machines. Due to the unavailability of actual AVs on the 
streets equipped with eHMIs, such approaches are infeasible. 

In partially related HCI domains, Savino et al. [57] evaluated 
bicyclist strategies to reach a given destination. It evaluates the ef-
fcacy of As-the-crow-fies (ATCF) navigation for cyclists, focusing 
on how diferent street network attributes impact the user expe-
rience. Using feature importance analysis across 1,633 cities, the 
paper identifes that an ideal environment for ATCF navigation 
has long streets, multiple turning options, few dead ends, and a 
grid-like structure. East Asian and North American cities are most 
suited for this navigation method, while Western Europe’s street 
networks are least suited. For this, Savino et al. [57] simulated an 
agent using a modifed depth-frst search. Ikkala et al. [35] adopt a 
diferent method, biomechanically simulating a user’s entire body. 
While this is a more accurate representation of a user in physical 
terms, the applicability to large-scale analyses is not yet possible. 

2 PURPOSE 
Using the microscopic trafc simulation tool SUMO [22], we vary 
pedestrian attributes that afect decision-making, making them 
more or less likely to respect AV priority at crossings. Microscopic 
trafc fow models focus on individual road user units, thus rep-
resenting dynamic variables such as the position and velocity of 
each vehicle and pedestrian. PedSUMO seeks to measure macro-
scopic changes in trafc fow using diferent variables for pedestrian 
decision-making (e.g., gender of pedestrians, street width, vehicle 
size) with diferent percentages of AVs (with eHMI) in trafc. 

3 CHARACTERISTICS 
After repository cloning, install the requirements detailed in the 
requirements.txt. If Large Language Models (LLMs) are to be 
used, the requirements_llm.txt must be installed. The require-
ments are minimal in addition to SUMO but require new versions 
for increased performance. If other cities than those provided are 
to be used, these must be downloaded and saved in the appropri-
ate directory. We strongly encourage community input, either as 
comments, issues, or additional code in the GitHub repository. 
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4 CODE/SOFTWARE 

4.1 Algorithms 
The main idea of PedSUMO is to identify unprioritized crossings 
with pedestrians wanting to cross in each step of the simulation 
(see Figure 1). Additionally, the algorithm flters those for situations 
in which these pedestrians would not usually be able to cross due 
to an oncoming vehicle. If that oncoming vehicle is an AV, a chance 
for the waiting pedestrian to cross the road anyway and ignore the 
vehicle’s right of way is calculated. 

To increase performance during simulation time, a dictionary of 
all incoming lanes into each unprioritized crossing in the simula-
tion is created when the scenario is selected. To achieve this, the 
successor of each lane in the network is evaluated. If the successor 
is an internal foe of an unprioritized crossing, the original lane is 
added to the set of lanes of the associated crossing. 

After the incoming lanes dictionary is created, the main simula-
tion loop starts. This simulation loop runs until the pre-confgured 
last simulation step (default = 3600 or 1h) is reached. At the start of 
each step, the terminated entities of the previous step are cleaned 
up, and newly added entities are adjusted. That includes assign-
ing attributes such as age and gender to pedestrians and declaring 
vehicles as automated or manual. Afterward, every pedestrian’s 
intent is evaluated. If a pedestrian intends to walk onto an unprior-
itized crossing as their next lane, this pedestrian is added to a list 
of waiting pedestrians for that crossing. 

For each of these crossings, it is then determined whether the 
current situation is an av_crossing_scenario That is the case when-
ever a pedestrian would not usually be able to cross the road due to 
an oncoming vehicle, but that vehicle is marked as an AV. On the 
side, the closest vehicle and its time to collision and distance to the 
crossing are calculated for future use. 

If the situation is an av_crossing_scenario, the crossing probabil-
ity is calculated. To avoid redundancy, all defance factors specifc 
to the crossing, such as street_width_defance_factor or the vehi-
cle_size_defance_factor , are calculated. Then, for each pedestrian 
wanting to cross the evaluated crossing, their individual defance 
factors, such as the waiting_time_defance_factor , are calculated. 
The supplementary material lists all factors and their calculation. 

The total crossing probability is then calculated by multiply-
ing each factor with the base_automated_vehicle_defance. The 
decision to cross is simulated by comparing this probability with 
a random number. If the pedestrian "decides" to cross, they are 
set to ignore all vehicles until they completely cross the crossing. 
Additionally, the danger of the situation is evaluated by calculating 
and then comparing the minimal stopping distance of the closest 
incoming vehicle in terms of time to collision with its distance to 
the crossing. If the stopping distance is larger than the vehicle’s 
distance to the crossing, the situation is deemed dangerous. 

Our implementation also allows the use of diferent LLMs pro-
vided by the HuggingFace transformers library [66] to identify 
potentially realistic behavior (see Park et al. [49]). Therefore, a 
prompt given the scenario values could start with: 

You are a pedestrian. You are standing at a street with some au-
tomated vehicles trying to decide whether you will cross it. You are 
distracted by your smartphone. There are no children in your vicinity. 
The approaching automated vehicle has an interface attached that 

communicates with you. You are not walking. The street is fve meters 
wide. The vehicle has a front area of three square meter. [...] 

After each crossing is evaluated, pedestrians who were altered 
in previous steps to ignore vehicles and successfully crossed their 
crossing get their alterations reset, and the next simulation step 
can begin. The usage of LLMs depends on the size of the Video 
Random Access Memory (VRAM) available and the chosen model. 
We suggest using 12GB VRAM or more. 

4.2 Simulated Pedestrian Crossing Factors 
Adjustable factors are diverse and have a diferent impact by default. 
The supplementary material shows a description of each factor 
with the corresponding source for reference: The relevant formulae 
determining the distribution of probabilities are described in the 
supplementary material. 

4.3 Measurements/Logging 
In addition to SUMO’s standard output (see [23]), we log extra 
parameters in a CSV fle (see supplementary material). 

Each crossing event has all factors listed that are explained in 
section 4.2, including defance values and their impact during the 
crossing event. Additionally, the static percentage of AVs (with 
eHMI) in all vehicles in trafc and the following data are logged in 
this fle for every crossing event. These can, as such, easily be used 
as independent variables. 

5 USAGE NOTES 
While SUMO generally allows the use of an OpenStreetMap (OSM) 
integration to simulate road networks, these often have to be fne-
tuned due to errors. Therefore, we provide already curated scenarios 
in Ingolstadt, Wildau, Monaco, and Bologna. Additionally available 
for simulation are Ulm and Manhattan, which were generated and 
adapted using SUMO’s OSMWebWizard. 

While the implementation is based on the scientifc literature, we 
highlight that the simulation cannot necessarily be seen as a true 
representation of the interaction between an AV and pedestrians. 
However, in line with Park et al. [49], the simulacra of human 
behavior with PedSUMO can generate insights that plausibly defne 
future behavior. This is currently the most appropriate avenue to 
study the large-scale efects of eHMI and AVs on trafc fow. 

AVs represent a specifc manifestation of robots and are, there-
fore, directly relevant to the HRI community (e.g., see [2, 40, 41, 51]). 
However, the current implementation can also serve as a basis for 
including simulated robots in communication with pedestrians. 
This is currently researched in the CHI and HRI community [50]. 

6 EVALUATION 
As we were interested in the large-scale efects of AVs and eHMIs 
on trafc, we simulated Ulm, Ingolstadt, Monaco, and Bologna (e.g., 
see Figure 2). Due to time constraints, we chose a step size of 0.2 
for the prevalence of AVs, eHMIs, and the base defance, resulting 
in 5 ∗ 5 ∗ 5 = 125 logs per city. A descriptive data report per city 
was generated via DataExplorer [18] and is attached in the GitHub 
repository under data. Due to the data size (between 275 MB and 
4.2 GB), we will make the data available upon request. All relevant 
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tables for the analyses are also available in the repository. We pro-
vide an initial overview of results for Ingolstadt, Germany, due to its 
realistically modeled trafc (taken from [63]). Because of the large 
number of data entries, using R or Python was too time-consuming. 
Therefore, we provide a Julia script which can be expanded. This 
reduced the runtime from hours to a few minutes. Due to our focus 
on providing the code, the analysis is not exhaustive. 

6.1 Heatmap of Interactions 
First, we provide a heatmap of all interactions over all parameter 
combinations in Figure 3. This heatmap shows that interactions 
occurred over the entire city. Attention: due to limits in Julia’s 
visualization, the city had to be inverted vertically. 

Figure 3: Heatmap of interactions between pedestrians and 
AVs in Ingolstadt, Germany over all parameter combinations. 

6.2 Interaction Efects on Crossing Probability 

Figure 4: Crossing Probability. Linear mixed model results. 

We ftted a linear mixed model to predict crossing probability 
with regard to AV density, eHMI density, and base AV defance (see 
Figure 4). For a detailed description, see the repository. 

6.3 Efect of Automated Vehicle Density on 
Collisions 

Figure 5: Collisions with regard to AV density. 

We ftted a linear model to fnd the correlation between AV 
density and collisions (see Figure 5). The linear model shows a 
downward trend of collisions with higher AV density. 

7 DISCUSSION AND FUTURE WORK 
In this work, we presented an implementation and preliminary data 
to study the efect of AVs and attached eHMIs in their interaction 
with pedestrians on a large scale. Our simulacra implementation 
relies on empirical data. However, scientifc data can be scarce re-
garding certain factors, showing a potential faw in how scientifc 
results are reported by solely reporting diferences but not quan-
tifying them. Therefore, some numbers may be educated guesses 
rather than extracted from studies and statistics. Nonetheless, we 
argue it is the most appropriate way to study the large-scale efects. 
Additionally, we enable the usage of LLMs for deriving crossing 
decisions. Our frst evaluations reported in Section 6 show that we 
can simulate crossings in various areas of the cities and that, for 
example, the impact of AV density on collisions seems negatively 
correlated (i.e., more AVs lead to reduced collisions). 

Very recently, Tian et al. [62] provided a novel model for the 
interaction of pedestrians and AVs. However, they do not provide 
an implementation, severely reducing applicability. In the future, 
we aim to re-implement this model to compare it against ours. Fur-
thermore, we envision including additional mobility concepts, such 
as micromobility, in the interaction simulation and implementing 
interaction between manual drivers and other vulnerable road users. 
Besides, our approach can be extended to investigate the macro-
scopic efects of novel in-vehicle user interfaces (see [37, 38]) on 
trafc. Also, the extensive resulting datasets suggest that spatio-
temporal automotive user interface analysis [36] could facilitate 
future simulation analysis. 
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